mediTree — an interactive exploration on decision trees

Ben Martin'
ETH Ziirich

Arwed Walke*
ETH Zirich

& Setari Abage Bearbeton Darsiolung Verbuf Lesezeichen Entwicker Fenster e

ST depression

Colin Riegg*

Deborah Zanette®

ETH Zurich ETH Zirich

B o & 07906 =

Slop of ST

1000

PeoeE 0 2 PO

Figure 1: mediTree graph view teaser image.

ABSTRACT

mediTree provides a structured tool to experiment with
automatically-generated decision trees. Based on a given
dataset, the prediction of important information such as ICU stay
or heart disease probability are useful tools for hospitals, but
especially on limited training data, trees can overly emphasize
special cases or completely disregard patients with characteristics
not contained in the dataset. The idea of meditree is to give
doctors full control over the decision trees, which are pre-generated
automatically.

1 PROBLEM OUTLINE

Computerized clinical decision support systems have been used in
medical fields since the 1980s. They help clinicans with a number
of tasks.[1] In our case, we developed a tool which helps doctors
diagnose patients with heart disease. The task was to implement a
visualization and editing platform for machine-generated decision
trees. Given a tree of depth n fitted on a dataset, the goal was to
expose editing and correction features to domain experts. In our
case, the tree was supposed to be trained on a patient dataset to

*e-mail: awalke @student.ethz.ch
fe-mail: benmartin @student.ethz.ch
*e-mail: rueeggco@student.ethz.ch
Se-mail: dzanette @student.ethz.ch

predict ICU stay duration, but we pivoted to heart disease predic-
tion later since better data was available. We also implemented the
tree creation itself, since this functionality fitted the microservice
requirements really nicely.

2 IMPLEMENTATION PROCESS

The work split was rather clear early on. Ben coded the frontend,
Arwed took care of the backend, database and CI/CD, Colin pro-
grammed the Python microservice and Deborah worked on UI and
backend routes.

Once we understood the desired deliverable, we had some very
clear ideas and got started setting up a Notion page for project man-
agement, task tracking, design inspiration and notes.

2.1 Brainstorming
Our key considerations were:

* How do we visualize the tree and make editing feel intuitive,
even at high complexity?

* How can we build the project in a way that enables secure
storage of potentially sensitive data?

* How do we handle file storage and collaboration so the pro-
gram gets out of the user’s way as much as possible?

We drew the conclusion that React Flow was going to power the
editor, and wanted to use PocketBase for the data storage, since it
was easy to self-host and a breeze to configure and hook up using
the extensively documented API. This improved our DX since we



got around writing SQL queries and cleared out any privacy con-
cerns right off the bat. After the second coursework assignment,
for which we implemented a backend that stores files that could be
uploaded from several clients, we noticed two things. Firstly: the
possibility of multiple people editing the tree, such as researchers
working remotely, doctors tweaking the trees, and possibly other
people requires some form of synchronization protocol. Secondly:
simply recreating the backend from the second assignment again for
the final project would, frankly, not be a very impressive feat. For
this reason, we really wanted to add collaboration to the project, in
the style of Figma, Google Docs and the likes. After some research,
we concluded that integrating React Flow with the Y.js library for
collaboration would be feasible.

2.2 The Mock-up

Our first step towards tackling the project was to create a Figma
project and coming up with a color palette. We associate the med-
ical field with a more cool-toned and sterile look, so we went with
shades of blue and gray. Then we made a first mock-up of a tree
and an information pop-up, which was ultimately scrapped and in-
tegrated into the side panel. We also came up with a design for
the tree editor and later one for the home screen where you get an
overview of your trees. The main focus was on making a minimal-
ist design that is easy and intuitive to use, while also retaining all
relevant functionality. Since we were originally supposed to predict
ICU stay duration, we focused on making an easy to use interface
that would not be an obstacle in a stressful and fast paced environ-
ment like the ICU. This design paradigm is also important in other
less time sensitive environments in the medical field, so we didn’t
have to make any UI adjustments when we switched to heart disease
instead.

2.3 Coding

Before we address the programming process, we provide a short
overview of the technical dimensions of our product to help under-
stand our process.

2.3.1 Tech Stack

We ultimately decided on the following technologies to approach
the implementation:

» Next.js + TypeScript for the frontend, graph powered by React
Flow

» TypeScript backend (REST API) using Hono
* Y.js to power live collaboration

* Socket.io as a glue between client and server
* Pocketbase as a light database and file storage
* Hoppscotch for API and backend testing

* Docker containers for each app component

* Python + FastAPI microservice

* Decision tree fitting using scikit-learn

2.3.2 Technical overview

Our backend can be understood as a hybrid HTTP/WebSocket solu-
tion that enables basic CRUD operations on all saved tree files via a
REST APIL. Whenever a user actually wants to edit a file (i.e. when
you click on a tree in the file explorer), the backend loads the tree
from disk into an in-memory document map. The socket.io sub-
service maintains a room and an associated Y.js document for each
document with active users and whenever changes are made to the

nodes, edges, values or any other file metadata, clients send an up-
date message via socket.io. The server then reconciles all changes
and distributes them to other clients using Y.js’s conflict-free repli-
cated data type (CRDT) system.

React Socketio

Frontend Nextjs

Simulat Tree K User Socketio
Microservice B Yjs docs
ion generat.

. (Memory Layer) ’ monitor... listeners

PocketBase i CRUD. Soon
saving Auth

Figure 2: Technical visualization

Whenever a room is empty (which happens when all active users
have closed the tab or disconnected), the affected document is saved
to PocketBase and removed from the in-memory document map to
save performance. We also run a routine that regularly checks for
inactive sockets and backs up all active graphs.

Users can create blank trees, copy existing ones and fit trees on
uploaded data. The last two options trigger a short socket.io nego-
tiation, in which the backend clones the requested file or requests a
fitted tree from the microservice, and notifies the frontend when it
is ready to be loaded.

2.3.3 Kickstarting backend and node editor

The first lines of code we wrote addressed the backend and the node
editor. While Ben prepared the node editing, Arwed started prepar-
ing the infrastructure necessary for tree saving and Y.js collabora-
tion. This involved agreeing on a data scheme that both sides of
the application could understand. Furthermore, the node editor was
not programmed to support collaboration out of the box, so Arwed
wrote a lengthy React hook to set up a persistent socket instance
whenever the tree is loaded. It automatically registers with the cor-
responding room when the user opens a document, and disconnects
from the room upon destruction. After a bumpy integration sprint
and a code issue that caused the tree to disappear after some edits
due to React’s page rendering logic, the hardest part was done: node
editing was collaborative, and synced to the in-memory YDocs.

2.3.4 Backing up decision trees

After some iterating and testing, implementing file saving in addi-
tion to the in-memory system we had in place became increasingly
inevitable. This required properly dockerizing PocketBase in order
to run it on other teammates’ machines and in the deployment, as
well as setting up the Hono endpoints. This turned out to be quite
the struggle, because the modularization Hono supposedly offered
repeatedly failed us for no apparent reasons. Originally, we planned
on having a separate file with a Hono instance for each major API
function, with a top-level instance that routes to the other routes, as
described in the docs. After a lot of debugging, we had to opt for a
single instance with subroutes instead to make the endpoints work
consistently. After that, it became clear that the current socket.io
system for files would not take us far enough. The first version
opened files by their name instead of their unique IDs and created
files in case the requested name was not found. But this did not
allow granular control over the file type (for instance, creating a
blank tree, forking an existing tree and requesting a pre-computed
decision tree from the microservice all require wildly different con-
trol flows in the backend). Hence, we went back to the drawing



board to figure out a better message protocol for file creation and
revamped the ID system. After ensuring that everyone could ac-
tually log into their local PocketBase instance and establishing a
consistent database scheme, the groundwork was laid.

From there on, we only had to implement moderately sophis-
ticated auto-backup and cleanup logic, which started working
quickly after the first commits.

2.3.5 The Microservice

The microservice acts as the computational engine of the appli-
cation, built using Python and FastAPl. We chose this stack to
leverage Python’s extensive ecosystem for data science, specifically
‘scikit-learn* for machine learning tasks and ‘pandas‘ for data ma-
nipulation. The service handles two critical functions that require
a bit more computation: generating the initial decision trees and
running patient simulations.

When a user requests a new tree fitted on data, the microservice
trains a Decision Tree Classifier on the heart disease dataset. A no-
table detail of our implementation is that the service performs the
graph layout calculation server-side. It traverses the ‘scikit-learn‘
tree structure and maps it directly to React Flow nodes and edges,
computing the X and Y coordinates for a tidy visualization. This
ensures that the frontend receives a ready-to-render graph, offload-
ing the complexity of tree layout algorithms from the client.

The second major component is the simulation logic. To sup-
port the workflow, we needed a way to test the user-edited trees
against real patient data. The microservice accepts a batch of pa-
tient records and the current graph structure, then simulates the path
of each patient through the tree. It parses the conditions on the
edges—handling boolean logic, numeric comparisons, and thresh-
olds to determine the final classification for each case. This also
allows the application to provide immediate feedback on the accu-
racy of the doctor’s modifications on the training data set.

2.3.6 Deploying PocketBase

One of the most time-consuming and exhausting parts of the project
was setting up PocketBase to run in the backend. This was espe-
cially difficult in the beginning, where Arwed had put into place a
makeshift solution for which the PocketBase executable was down-
loaded into the backend container, with both sharing the same
Dockerfile, since exposing ports on the deployment without assign-
ing specific domains did not work well. It was only in the last week
that we realized we could just replace the unused Postgres Docker-
file with PocketBase, but even then, configuring a default superuser
and testing the deployment turned out to be quite a hassle, since
we had to wait for 90% of the deployment to finish every time we
changed the pipeline before seeing results. Even worse, since we
used a docker compose setup locally, the Helm configuration was
notoriously difficult to test outside of the GitLab environment.

The trouble eventually culminated in a crashed helm release that
blocked the build pipeline until we manually managed to take it
down. But after that, the database finally ran on its own subdo-
main and we could connect all app parts and URLs with little to no
obstacles.

3 THE Ul

As it was already outlined in the mock-up section, our main objec-
tive was to make the website easy and intuitive to pick up, since
doctors are busy and don’t have time to learn to use a complicated
new tool. Our goal is to provide a practical tool that assists them in
diagnosing patients. If the tool is too much of a bother to use than
to just get a second opinion or to thoroughly go through the data
yourself, then it’s pointless. But having a working tool is only half
of the equation, which is why we put a lot of thought into the Ul
and striking a balance of functionality and simplicity.

3.1 The Homepage

The Homepage provides a neat overview of already existing trees
and the option to create a new tree. Besides starting a blank tree,
you further have the option to start with a decision tree of specified
depth fitted on our training data to predict heart disease. The header
allows you to seamlessly switch between tabs which contain your
trees or to go back to the homepage. The main area of the homepage
shows all of the existing trees with their names, so a doctor can
quickly find the tree they re looking for.

When users open the app for the first time, a short welcome page
explains the workflow and features for a quick onboarding.

3.2 The Tree Editor

The main challenge of the frontend work was building a tree com-
ponent that fulfilled all of these requirements:

1. The tree supports medical staff in making patient decisions on
empirical data while still giving final authority to the person
in power.

2. Medical staff should easily edit decision trees based on
present facilities and domain expertise. Doctors can easily
change values, add notes, change, add or delete nodes in the
tree

3. Ease of use and an intuitive user interface has to be guaran-
teed in every part of the product to not add additional mental
burden to medical staff in stressful and time-critical situations

4. The tree visualizes and simulates patient histories where doc-
tors can easily enter and edit patient data.

5. Evaluate the accuracy of a selected tree based on selected
depth and custom edits done by medical staff.

3.2.1 Tree Editing

Boos s

Figure 3: The tree component in action

We decided to make the main area of the tree editor blank, so the
user can fully focus on the data. A toolbar offers all of the necessary
tools; select, pan to move around, a sticky note feature to comment
on nodes, thresholds or even the whole tree, a highlighter to mark
especially important components and a node and leaf adder. There
is also a small map in the bottom left corner to give an overview of
the scale of the tree. When more information or advanced edits are
needed, you can select a node and open the side panel, which lets
you change the feature of the node or adjust its thresholds.



3.2.2 Nodes and the Sidepanel

In the tree there are 2 different types of nodes: decision nodes that
can have ingoing and outgoing edges. These decision nodes are
used to classify patients into distinct subtrees where the classifica-
tion is based on medical features such as age, blood pressure, heart
rate or certain blood markers.

The second type of node is a leaf node that ends the path for a pa-
tient and puts the patient into a bucket, in our current demo these
buckets are heart disease and no heart disease based on our train-
ing data. However, our infrastructure also supports other types of
classifications through all layers of out tech stack. In the future,
this infrastructure could be used to predict features such as length
of ICU stay, necessity of certain medical interventions such as the
need for mechanical ventilation, etc.

3.2.3 Patient Simulation

Our tree supports uploading a .csv or .xlsx file with patient data
where each row contains the relevant patient information. If this
table fits the attributes of our tree, you can choose to simulate this
table directly on the tree. When you choose to simulate by clicking
the play button below the header, all patients in the file get added
to their respective leaf nodes. By choosing a leaf node then, you
can get an overview of patients in this bucket, view the attributes
of these patients in the buckets, edit the patient data and view their
path through the tree to their final leaf node. Figure 4 shows such a
highlighted path for a sample patient from an uploaded table.

Iy @ooes-

Figure 4: The simulated path of a patient and the side panel on the
right

4 WHAT WE LEARNED

The final project was quite a step up from the previous assignments,
which made it a lot more interesting to work on. For some of us,
this was the first full-scale project they have built since the start of
our studies, and it was impressive to see how much more capable
we have become since.

The final version of the app also closely resembles the Figma
mockup because we did not have to iterate too much on it, which is
a success in our opinion.

We also did not have prior experience with machine learning, so
we really appreciated the opportunity to learn something new and
have it integrated into a real, tangible application right away.

Some notes on vibe coding: While using Al agents in cursor and
using LLMs definitely sped up our development, current models
are not yet at the point that web development can be considered a
solved field. All architectural decisions had to be done completely
by hand, appropriate libraries, bug fixing, review still has to be done
by hand to avoid hard to detect and debug errors. Although it al-
lowed us to make rapid progress at first, Al was more of an ad-

vanced auto-complete service than an additional team member to
us.

On the topic of infrastructure, this project definitely taught us a
lesson on the topic of monolithic repositories. Although many suc-
cessful projects are built on monorepos, we quickly realized that
with an increasing complexity, the single build pipeline that en-
compassed all layers of the tech stack bottlenecked our workflow.
Simple changes to the database configuration required a 15-minute
wait time to test in production, whereas the local docker-compose
build only took a couple of minutes. This proved especially chal-
lenging when we noticed a bad CORS configuration, causing the
microservice to deny requests, which could not be debugged lo-
cally due to all services having the same localhost domain. Hav-
ing individual containers and workflows for each component would
have improved our developer experience and iteration speed signif-
icantly.

5 LIMITATIONS & NEXT STEPS

While our current platform provides a valuable contribution in uti-
lizing decision trees for prediction tasks, it is primarily constrained
by available data. Our infrastructure supports creating and working
with decision trees for many more clinical decisions beyond pre-
dicting heart disease risk, but we have not been able to find reliable,
cleaned datasets for these additional use cases. A first step towards
making these decision trees more broadly usable would be to build
data sets which they could be fitted on. To transition from a proto-
type to an indispensable tool for medical researchers and clinicians,
our infrastructure needs to generalize across a broader range of
tasks. This requires expanding our data pipeline and demonstrating
the system’s capabilities across multiple clinical prediction scenar-
ios. Additionally, we have identified distinct user requirements that
suggest splitting our product into two specialized versions: one for
clinicians and one for researchers. Clinicians working in intensive
care units require extensive documentation capabilities, seamless
integration with local hospital equipment, and streamlined work-
flows optimized for bedside decision-making. Researchers, by con-
trast, need deeper control over the machine learning components,
including the ability to create custom test sets, access advanced
data analysis tools, perform model comparisons, and fine-tune algo-
rithmic parameters. By developing these as separate products with
tailored interfaces while maintaining a shared core infrastructure,
we can better serve both communities and maximize the platform’s
clinical and research impact.

6 CONCLUSION

It’s fascinating to see how closely two fields like programming and
medicine are intertwined and how much ML can contribute. We
constantly make decisions, but when making life or death decisions
in stressful environments it’s certainly helpful to have some assis-
tance. Often one can overlook trivial details or forget them entirely.
While a decision tree model couldn’t replace a professional, such
as a doctor, clinician or researcher, it can certainly be a tool to un-
derstand the data better and get a visualization of very theoretical
concepts and metrics. The field of ML trained decision trees is
promising and certainly a valuable tool to consider using in com-
plex decision-making processes.

ACKNOWLEDGMENTS

We would like to thank Diana Robinson and Robin Chan for super-
vising our project.

REFERENCES

[1] R. T. Sutton, D. Pincock, D. C. Baumgart, D. C. Sadowski, R. N. Fe-
dorak, and K. I. Kroeker. An overview of clinical decision support sys-
tems: benefits, risks, and strategies for success. npj Digital Medicine,
3:17, 2020. doi: 10.1038/s41746-020-0221-y 1



	Problem Outline
	Implementation process
	Brainstorming
	The Mock-up
	Coding
	Tech Stack
	Technical overview
	Kickstarting backend and node editor
	Backing up decision trees
	The Microservice
	Deploying PocketBase


	The UI
	The Homepage
	The Tree Editor
	Tree Editing
	Nodes and the Sidepanel
	Patient Simulation


	What we learned
	Limitations & Next Steps
	Conclusion

